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Abstract The N -dependence of the non-relativistic bosonic ground state energy E B(N)

is studied for quantum N -body systems with either Coulomb or Newton interactions.
The Coulomb systems are “bosonic atoms,” with their nucleus fixed, and it is shown that
E B

C (N)/PC (N) grows monotonically in N > 1, where PC (N) = N2(N − 1). The Newton
systems are “bosonic stars,” and it is shown that when the Bosons are centrally attracted to
a fixed gravitational “grain” of mass M > 0, and N > 2, then E B

N (N;M)/PN (N) grows
monotonically in N , where PN (N) = N(N − 1)(N − 2); in the translation-invariant prob-
lem (M = 0), it is shown that when N > 1 then E B

N (N;0)/PC (N) grows monotonically
in N , with PC (N) from the Coulomb problem. Some applications of the new monotonicity
results are discussed.

Keywords Non-relativistic quantum mechanics · N body problems · Ground state
energies · Bosonic atoms · Bosonic stars · Rigorous results

1 Introduction

While bosonic matter in bulk has been a subject of intense theoretical research over the
years, spurned on in particular by the recent breakthroughs in creating Bose-Einstein con-
densates in the laboratory, theoretical research into the properties of individual bosonic
atoms could seem to always remain of purely academic interest, for there are no bosonic
electrons in nature. Yet in principle bosonic atoms can exist in nature as we know it, and
not just in the “artificial” sense described in [26]. Namely, they can be formed with N

bosonic anti-α particles of charge −2e and spin 0 each playing the rôle of bosonic electrons
which are attracted by a nucleus of charge 2eN , conceivably up to N ≈ 46. Both varieties
of particles would have to be produced in a laboratory, the nucleus by “just” stripping away
all electrons from its associated atom, unless the nucleus is itself an α particle which na-
ture supplies through some radioactive materials. This latter case yields the simplest (i.e.
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N = 1) α-bosonic atom, “alphium,” the α particle analog of protonium,1 and of the familiar
positronium (which would have better been called “electronium”). The N = 2 α-bosonic
atom would have a Beryllium nucleus, the stable isotope of which (9Be) is a fermion with
spin 3/2; and so on. Since fermionic anti-3He nuclei have already been produced in heavy
ion collisions at CERN [2–4], it seems a safe bet to predict that also bosonic anti-α particles
are going to be produced in the laboratory,2 and that research into individual bosonic atoms
will take off once they can be captured in large enough numbers and made to form bound
states with a normal nucleus.3

Like positronium and protonium, both of which have lifespans of the order of μ-seconds,
also alphium and the heavier α-bosonic atoms will be short-lived, but since the involved
α and anti-α particles are compounds of protons and neutrons, respectively their anti-
particles, which according to the standard model are themself bound states of up and down
quarks, respectively anti-quarks, the annihilation modes will be more complicated—and
more interesting—than those of protonium,4 and vastly more so than those of positronium.5

Thus bosonic atoms would also open up a new window for studying the strong interactions
at lower energies.

In the meantime theoretical research into the properties of bosonic atoms remains the
only available venue of inquiry. Following widespread custom [5, 6, 8, 9, 29, 34–36], in
this paper we study the simplified non-relativistic problem with the atomic nucleus fixed at
the origin of a co-ordinate system. We will show that E B

C (N)/PC (N) grows monotonically
in N > 1, where E B

C (N) is the bosonic ground state energy of the fixed-nucleus atomic
Coulomb Hamiltonian, and PC (N) = N2(N − 1). The Galilei-invariant atomic model with
a dynamical nucleus is a more tricky N + 1-body problem which we hope to address in the
future.

Our technique of proving monotonicity of the bosonic ground state energy for the atomic
Coulomb system easily handles also some gravitational Newton system modeling a non-
relativistic “bosonic star.” While we have argued that bosonic atoms can in principle exist
in nature as we know it and that we expect them to be produced in laboratories eventu-
ally, it is not clear to the author whether bosonic stars will ever be more than theoret-
ical speculation. In any event, theoretical studies of the bosonic ground state energy for
N -body Schrödinger operators with gravitational Newton interactions have a long tradition,
see [7, 17, 18, 28, 32, 36] (see also [14, 19, 20, 29, 30] for some semi-relativistic models),
and so we may as well contribute to it.

We will first show that when the Bosons are centrally attracted to a fixed gravitational
“grain” of mass M > 0, and N > 2, then E B

N (N;M)/PN (N) is finite and grows monoton-
ically in N , where PN (N) = N(N − 1)(N − 2). Fixing some attracting center—the nu-
cleus in the atomic and a “grain” in the stellar case—is a convenient technical ruse which
ensures the existence of a ground state and simplifies the mathematics. However, while a
fixed nucleus is a physically justifiable approximation for normal atoms because of their

1Protonium, which is a fermionic atom made of a proton and an anti-proton, recently became an experimental
reality [37, 38].
2Should the production of even heavier anti-nuclei become feasible some day, then one could also enlist
N > 1 bosonic α particles of charge 2e and spin 0 for playing the rôle of bosonic electrons orbiting an anti-
nucleus of charge −2eN . Even heavier bosonic atoms are conceivable, e.g. with N Neon nuclei 20Ne of
charge 10e and spin 0 each attracted by an anti-nucleus of charge −10eN , perhaps up to N ≈ 9.
3It would be foolish, though, to predict when this will become an experimental reality.
4For an early attempt at calculating effective decay channels of protonium, see [11].
5The vacuum decay channels of positronium are well-known, though not yet completely understood [10].
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large nucleon-to-electron mass ratio, and marginally acceptable for bosonic atoms made of
anti-α particles bound to a sufficiently large normal nucleus, fixing a gravitational grain
is entirely artificial and, to the best of the author’s knowledge, has not yet attracted much
attention in the mathematical physics community. The problem with a fixed attracting cen-
ter is of interest chiefly because the limit limM↓0 E B

N (N;M) ≡ E B
N (N;0+) is not only a

lower bound for the actual M = 0 “ground state” energy (now read: infimum) E B
N (N;0)

of the proper Galilei-invariant N -body operator of a bosonic star (obtained by simply set-
ting M = 0 in the operator with fixed attracting center of mass M), it can in fact be shown
[33] that E B

N (N;0+) equals E B
N (N;0). And so, since PN (N) is independent of M , we

conclude that also E B
N (N;0)/PN (N) is finite for N ≥ 3 and grows monotonically in N .

Interestingly enough, though, we get a stronger monotonicity result for E B
N (N;0) by ap-

plying our technique directly to the M = 0 Galilei-invariant N -body operator. Namely, the
familiar reduction of the two-body Hydrogen problem to an effective one-body problem with
attractive center makes it plain that the translation-invariant N -body problem is effectively
an N −1-body problem with attractive center in disguise, obtained by subtracting the energy
for the degrees of freedom of the N -body system’s center-of-mass off from the Hamiltonian
without changing the value of the “inf” (though rendering a “min” for the so-obtained “in-
trinsic Hamiltonian”). Our technique applied directly to the reduced Galilei-invariant M = 0
problem, i.e. the intrinsic Hamiltonian, produces the stronger monotonicity law that, when
N > 1 then E B

N (N;0)/PC (N) is finite and grows monotonically in N , with PC (N) as
before. Note that this monotonicity law implies the monotonicity of E B

N (N;0)/PN (N) for
N ≥ 3.

The precise statements of our results are given in Sect. 2, their proofs in Sect. 3. Section 4
recalls the Hall-Post inequalities and shows that these are further spin-offs of our techniques.
We conclude our paper in Sect. 5 with an outlook on the fermionic ground state energies.

2 Results

2.1 Bosonic Atoms with a Fixed Nucleus

Whether one takes N bosonic anti-nuclei of charge −ze each, which repell each other by
Coulomb’s law and are attracted to a nucleus of charge Nze by its electrical Coulomb field,
or N bosonic charges ze in the field of an anti-nucleus of charge −Nze, with z ∈ N, when
the (anti-)nucleus is fixed at the origin the non-relativistic N -body Hamiltonian for such a
bosonic atom in either case is given by the formal Schrödinger operator

H
(N)

C ≡
∑

1≤k≤N

(
1

2m
|pk|2 − Nz2e2 1

|qk|
)

+
∑∑

1≤j<k≤N

z2e2 1

|qk − qj |
, (1)

where the subscript C indicates the electrical Coulomb interactions, and m is the Newtonian
inertial mass of each of the N particles. In (1), pk = −i�∇k is the familiar momentum
operator canonically dual to the k-th component of the configuration space position operator
qk ∈ R

3. The formal operator H
(N)

C is densely defined on C∞
0 (R3) ∩ L2(R3N).

As self-adjoint extension we take its Friedrichs extension, also denoted by H
(N)

C , which
is a permutation-symmetric, self-adjoint operator with form domain given by the N -fold
tensor product D

(N)
Q ≡ H1(R3) ⊗ · · · ⊗ H1(R3) ⊂ L2(R3N). The quadratic form associated

to the operator H
(N)

C is

Q (N)

C (ψ(N)) = �
2

2m
K (N)(ψ(N)) − Nz2e2 C (N)(ψ(N)) + z2e2 I (N)(ψ(N)), (2)
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where (with integrals extending over R
3N )

K (N)(ψ(N)) =
∫ ∑

1≤k≤N

|∇kψ
(N)|2d3N

q, (3)

C (N)(ψ(N)) =
∫ ∑

1≤k≤N

1

|qk|
|ψ(N)|2d3N

q, (4)

I (N)(ψ(N)) =
∫ ∑∑

1≤k<l≤N

1

|qk − q l |
|ψ(N)|2d3N

q. (5)

The bosonic ground state energy of H
(N)

C is defined by

E B
C (N) ≡ min

{
Q (N)

C (ψ(N))

∣∣∣ψ(N) ∈ D
(N)
Q ; ‖ψ(N)‖L2(R3N ) = 1

}
. (6)

It is well known, e.g. [36], that a minimizing ground state ψ
(N)

B for (6) exists, and that
by the permutation symmetry of H

(N)

C the minimizer is permutation symmetric, too, hence
“bosonic.” The variational problem (6) has been studied in [5, 6, 8, 9, 29, 34–36]; yet the
following monotonicity result for E B

C (N) seems new.

Proposition 1 Let E B
C (N) denote the bosonic ground state energies defined in (6), and

let PC (N) = N2(N − 1). Then for N ≥ 2 the ratio E B
C (N)/PC (N) is finite and grows

monotonically in N .

Proposition 1 has some interesting spin-offs.

Corollary 1 For N > 1 we have

E B
C (N) ≥ E B

C (2)
1

4
N3(1 − N−1). (7)

The lower bound (7) on E B
C (N) is sharp for N = 2, but certainly not optimal for large N .

The Helium-type ground state energy E B
C (2) can be calculated, not exactly, but approx-

imately with high precision using the method of Hylleraas [22]. The bound (7) may be
compared with the bound obtained by setting k = 1 and z1 = N in formula (6.1) in [29],
which reads

E B
C (N) ≥ −(const.)N3(1 + N−4/3). (8)

Both bounds have the same leading order power in N ; if “(const.)” in (8) is ≥ − 1
4 E B

C (2),
then (7) improves over (8) for all N , but if “(const.)”< − 1

4 E B
C (2), then (8) beats (7) for

N > N∗, with N∗ depending on “(const.).” Of course, since (7) is sharp for N = 2, “(const.)”
cannot be smaller than −E B

C (2)/(8 + 25/3), and if “(const.)” equals this value then (8) beats
(7) for all N > 2.

To state our second spin-off of Proposition 1 we recall that an upper bound to the bosonic
ground state energy E B

C (N) is obtained by estimating Q (N)

C (ψ(N)) from above with the
help of a convenient trial wave function ψ(N) ≡ φ⊗N ∈ D

(N)
Q , with φ ∈ H1(R3). We have

Q (N)

C (φ⊗N) = H (N)

C (φ), with

H (N)

C (φ) = N
�

2

2m
K (1)(φ) − N2z2e2C (1)(φ) + N(N − 1)z2e2 1

2
I (2)(φ ⊗ φ) (9)
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a Hartree functional. Setting φ(q) = N3/2φ0(Nq) yields the well-known upper bound
E B

C (N) ≤ −C0N
3. Pairing it with Proposition 1 we conclude

Corollary 2 The limit limN↑∞ N−3 E B
C (N) exists and is non-trivial.

Our arguments do not reveal the nature of such a limit. In [9] it is shown that the limit is
given by the minimum of the Hartree functional

HC (φ) = �
2

2m
K (1)(φ) − z2e2C (1)(φ) + z2e2 1

2
I (2)(φ ⊗ φ) (10)

over normalized H1(R3); see also [5, 8, 29, 35, 36].

2.2 Bosonic Stars with a Fixed Gravitational Center

The formal Schrödinger operator for a bosonic star with fixed gravitational center reads

H
(N)

N ,M ≡
∑

1≤k≤N

(
1

2m
|pk|2 − GMm

1

|qk|
)

−
∑∑

1≤j<k≤N

Gm2 1

|qj − qk|
, (11)

with M > 0. The operators of the parameter (M) family (11) are densely defined and
symmetric on C∞

0 (R3) ∩ L2(R3N), and as self-adjoint extension of (11) we again take its
Friedrichs extension, also denoted by H

(N)

N ,M , a permutation-symmetric, self-adjoint opera-

tor with form domain given by the N -fold tensor product D
(N)
Q ≡ H1(R3) ⊗ · · · ⊗ H1(R3) ⊂

L2(R3N). The quadratic form associated to the operator H
(N)

N ,M is

Q (N)

N ,M(ψ(N)) = �
2

2m
K (N)(ψ(N)) − GMmC (N)(ψ(N)) − Gm2I (N)(ψ(N)), (12)

where K (N), C (N), and I (N) are defined in (3), (4), and (5), respectively. The bosonic ground
state energy of H

(N)

N ,M for M > 0 is defined by

E B
N (N;M) ≡ min

{
Q (N)

N ,M(ψ(N))

∣∣∣ψ(N) ∈ D
(N)
Q ; ‖ψ(N)‖L2(R3N ) = 1

}
. (13)

By the permutation symmetry of H
(N)

N ,M , the minimizer for (13) with M > 0, denoted ψ
(N)

B,M ,
is permutation symmetric, too, hence “bosonic.”

We will show that the bosonic ground state energies E B
N (N;M) exhibit a monotonic

dependence on N similar to Proposition 1.

Proposition 2 For M > 0 let E B
N (N;M) denote the bosonic ground state energies defined

in (13), and let PN (N) = N(N −1)(N −2). Then for N ≥ 3 the ratio E B
N (N;M)/PN (N)

is finite and grows monotonically in N .

Also Proposition 2 has two technical spin-offs. The first one is immediate:

Corollary 3 For N > 2 we have

E B
N (N;M) ≥ E B

N (3;M)
1

6
N3(1 − N−1)(1 − 2N−1). (14)
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The lower bound (14) on E B
N (N;M) is sharp for N = 3, but far from sharp when N � 1.

The coefficient E B
N (3;M) can be estimated from below,6 uniformly in M , in terms of the

two-body ground state energy with central mass M/2 and gravitational constant 2G, as
follows: E B

N (3;M) ≥ 3E B
2N (2;M/2), where the notation “2N ” stands for the replacement

of G by 2G. Neither E B
N (3;M) nor E B

2N (2;M/2) are known to be exactly computable,
but the Helium-type ground state energy E B

2N (2;M/2) can certainly be computed in very
accurate approximation by Hylleraas’ variational method [22].

To state our second spin-off of Proposition 2 we recall that an upper bound to the
bosonic ground state energy E B

N ,M(N) is obtained by estimating Q (N)

N ,M(ψ(N)) from above

with a convenient trial wave function ψ(N) ≡ φ⊗N ∈ D
(N)
Q , with φ ∈ H1(R3). This gives

Q (N)

N ,M(φ⊗N) = H (N)

N ,M(φ), where

H (N)

N ,M(φ) = N
�

2

2m
K (1)(φ) − NGMmC (1)(φ) − N(N − 1)Gm2 1

2
I (2)(φ ⊗ φ) (15)

is a Hartree functional. Setting φ(q) = N3/2φ0(Nq), one easily obtains upper bounds on the
Hamiltonian ground state energies which are ∝ −N3(1 + O(1/N)). Pairing such an upper
bound with Proposition 2 we obtain

Corollary 4 The limit limN↑∞ N−3 E B
N (N;M) exists and is non-trivial.

Our arguments do not reveal the nature of the limit, yet it is natural to conjecture that it
is given by the minimum of the limiting Hartree functional

HN (φ) = �
2

2m
K (1)(φ) − Gm2 1

2
I (2)(φ ⊗ φ) (16)

which does not feature M . This should be provable along the lines of [9] and [30]; see also
[29, 36].

We stress that the above stated results hold for any grain’s mass M > 0.

2.3 Bosonic Stars: the Galilei-invariant Model

When M = 0 then the “min” in (13) has to be replaced by “inf.” Yet, for M = 0 the Hamil-
tonian (11) can be decomposed as

H
(N)

N ,0 ≡ H
(1)

free + H
(N−1)

N ,int , (17)

where H
(1)

free is the Hamiltonian of a single non-interacting (free) particle of mass Nm, de-
scribing the center-of-mass motion of the N -body system,

H
(1)

free ≡ 1

2Nm
|P |2, (18)

6Incidentally, since all E B
N (N;0+) < 0, neither E B

N (2;M) nor any E B
N (N;M) for N > 2 can be esti-

mated from below uniformly in M by some fixed multiple of the explicitly computable one-body ground
state energy E B

N (1;M) = − 1
2 G2M2m3/�

2.
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where P = ∑N

k=1 pk , while H
(N−1)

N ,int is the reduced Hamiltonian for the remaining degrees of
freedom of the N -body system, describing the system-intrinsic motions, in effect an N − 1-
body problem. The intrinsic Hamiltonian is written most symmetrically in the vector vari-
ables of (11), viz.

H
(N−1)

N ,int ≡
∑∑

1≤j<k≤N

(
1

2Nm
|pj − pk|2 − Gm2 1

|qj − qk|

)
, (19)

see the first (unnumbered) equation on p. 382 in [21], see also (2.3) in [17]; however,
only N − 1 vectors of the set {qk}N

k=1 are linearly independent—in other words, the vec-
tors in {qk}N

k=1 are linear combinations of N − 1 basis vectors in the linear subspace
{Q ≡ 0}⊥ ⊂ R

3N , where Q = N−1
∑N

k=1 qk is the position vector of the system’s center-of-
mass canonically conjugate to P (up to scaling). Orthogonal transformations from {qk}N

k=1
to {Q} ∪ {qk}N−1

k=1 having unit Jacobian determinant are described in [31] and [17], for in-
stance. The Friedrichs extension of the intrinsic Hamiltonian (19) takes its minimum on
its form domain H1(R3) ⊗ · · · ⊗ H1(R3) ⊂ L2(R3(N−1)), and its minimum agrees with the
infimum of the full Hamiltonian (11) for M = 0.

Proposition 3 Let E B
N (N;0) denote the bosonic ground state energies defined in (13) with

M = 0 and “min” replaced by “inf.” Then for N ≥ 2 the ratio E B
N (N;0)/PC (N) is finite

and grows monotonically in N . Here, PC (N) = N2(N − 1) is the same polynomial which
occurs in the “atomic” Proposition 1.

Corollary 5 For N > 1 we have

E B
N (N;0) ≥ E B

N (2;0)
1

4
N3(1 − N−1). (20)

The inequality (20) is sharp for N = 2, but far from optimal when N � 1. The lower
bound (20) is in fact known since [32], where it was proved with different arguments; see
also [7, 15, 16]. A slightly weaker bound was obtained in [28], where it was proved that for
N ≥ 2,

E B
N (N;0) ≥ E B

N (2;0)
1

2
N3(1 − N−1)2. (21)

Also inequality (21) is sharp for N = 2, but far from optimal when N � 1. We remark that
one can explicitly compute E B

N (2;0) = − 1
4G2m5/�

2.
Next we recall that in [15] also the mirror-symmetric upper bound

E B
N (N;0) ≤ −BN3(1 − N−1) (22)

was proved without invoking a Hartree functional (more explicitly, set p = −1 in formula
(1.3) in [16]). Yet, while formula (1.3) in [16] does not imply that E B

N (N;0)/PC (N) con-
verges as N → ∞, our Proposition 3 paired with Hall’s upper bound (22) gives right away

Corollary 6 The limit limN↑∞ E B
N (N;0)/PC (N) exists and is non-trivial.

It is known [36] that the limit is given by the minimum of the Hartree functional (16). Of
course, the upper bound E B

N (N;0) ≤ −CN3 with C coming from Hartree theory, obtained
earlier in [28, 32], can also be paired with Proposition 3 to yield Corollary 6.
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By the way, the convergence of the various monotonic increasing sequences in Proposi-
tions 1, 2, and 3 follows already from the negativity of all the ground state energies—what
does not follow, then, is the nontriviality of the limits.

3 Proofs

Our Propositions 1, 2, and 3 are inspired by a monotonicity result for classical ground state
energies proved in [24] and elaborated on in [25]. The classical proposition also covers
Coulomb charges which, instead of being attracted by a nucleus, are confined to a sphere or
some other compact domain, and then E cl

C (N)/P cl
C (N) grows monotonically, where E cl

C (N)

is the classical Coulomb ground state energy and P cl
C (N) = N(N − 1). We shall rewrite the

functionals of the quantum ground state energy variational principles into a quasi-classical
format and then recycle the classical estimates. Yet the proofs of Propositions 1, 2, and 3
do not just consist of such variants of the classical estimate in [24, 25] but also use the
virial theorem in an essential way; the virial theorem plays no rôle in the classical proof.
Incidentally, to apply the virial theorem we need E B(N) to be a minimum, not just an
infimum.

3.1 Proof of Proposition 1

We begin by rewriting the quadratic form Q (N)

C (ψ(N)) into the convenient format of a
quasi-classical expectation functional. Recall the physicists’ non-unitary Fourier transform7

of ψ(N),

ψ̂
(N)

�
(p1, . . . ,pN) :=

∫
ψ(N)(q1, . . . ,qN)e−ip·q/�d

3N

q, (23)

so that

ψ(N)(q1, . . . ,qN) = 1

h3N

∫
ψ̂

(N)

�
(p1, . . . ,pN)eip·q/�d

3N

q, (24)

where h = 2π� is Planck’s quantum of action. This Fourier transform is a non-isometric
isomorphism of L2(R3N), so when ‖ψ(N)‖L2(R3N ) = 1, then

∫
|ψ̂(N)

�
(p1, . . . ,pN)|2d3N

p = h3N . (25)

Clearly, h−3N |ψ̂(N)

�
|2|ψ(N)|2 ≥ 0, and

∫∫
h−3N |ψ̂(N)

�
|2|ψ(N)|2d3N

pd
3N

q = 1 when
‖ψ(N)‖L2(R3N ) = 1, so we can think of h−3N |ψ̂(N)

�
|2|ψ(N)|2 as a formal probability density

function on the N -body phase space of points (p1, . . . ,pN ;q1, . . . ,qN) ∈ R
6N . With the

help of this Fourier transform, and integration by parts, we can rewrite the quadratic form
(2) into a quasi-classical ensemble average thusly,

Q (N)

C (ψ(N)) =
∫ ∫

H
(N)

C h−3N |ψ̂(N)

�
|2|ψ(N)|2d3N

pd
3N

q =: 〈H(N)

C

〉
ψ(N) (26)

where the double integral extends over R
6N , and H

(N)

C (p1, . . . ,qN) now is the classical
Hamiltonian with Coulomb interactions, formally also given by (1) but now with pk ∈ R

3;

7This differs only by scaling from the conventional unitary Fourier transform.
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we use the same symbol for the Hamiltonian operator and its classical counterpart, as the
context makes it unambiguously clear which object is meant.

Using next a familiar trick of Fisher and Ruelle [13] and Dyson and Lenard [12], we
rewrite the Coulomb Hamiltonian (1) as a double sum,

H
(N)

C ≡
∑∑

1≤k<l≤N

U
(N)
k,l , (27)

where

U
(N)
k,l := 1

2m(N − 1)

(|pk|2 + |pl |2
) − Nz2e2

N − 1

(
1

|qk|
+ 1

|q l|
)

+ z2e2 1

|qk − qj |
. (28)

The superscript (N) at U
(N)
k,l reminds us of the explicit N dependence exhibited at r.h.s. (28).

With the help of (27) the quadratic form alias expectation functional (26) becomes

Q (N)

C (ψ(N)) ≡
∑∑

1≤k<l≤N

〈
U

(N)
k,l

〉
ψ(N) . (29)

The double sum at r.h.s. (29) can be represented graph-theoretically as a complete N -graph
with vertices numbered 1, . . . ,N , with a value 〈U(N)

k,l 〉ψ(N) assigned to the bond between the
k-th and l-th vertex. An elementary graph-theoretical identity used in the classical proof
in [24, 25] says that such a sum over all bonds in a complete N -graph with N > 2 equals
(N − 2)−1 times the sum over all bonds of all its complete N − 1-subgraphs. So for N > 2,

∑∑

1≤k<l≤N

〈
U

(N)
k,l

〉
ψ(N) = 1

N − 2

∑

1≤n≤N

∑∑

1≤k<l≤N
k �=n�=l

〈
U

(N)
k,l

〉
ψ(N) . (30)

Note that (30) holds without any particular symmetry assumption on ψ(N).
We now start our estimates. Writing minψ(N) for the minimum over the subset of D

(N)
Q

satisfying ‖ψ(N)‖L2(R3N ) = 1, for N > 2 we find

E B
C (N) = min

ψ(N)

∑∑

1≤k<l≤N

〈
U

(N)
k,l

〉
ψ(N)

≥ 1

N − 2

∑

1≤n≤N

min
ψ(N)

∑∑

1≤k<l≤N
k �=n�=l

〈
U

(N)
k,l

〉
ψ(N)

≥ 1

N − 2

∑

1≤n≤N

min
ψ(N−1)

∑∑

1≤k<l≤N
k �=n�=l

〈
U

(N)
k,l

〉
ψ(N−1)

= N

N − 2
min

ψ(N−1)

∑∑

1≤k<l≤N−1

〈
U

(N)
k,l

〉
ψ(N−1) . (31)

The first equality in (31) is just definition (6) and identity (29). For the first inequality in (31)
we used identity (30) and the fact that the minimum of a sum is never lesser than the sum
of the minima; actually, this inequality is in general strict. For the second inequality in (31)
we used that the to-be-minimized double sums before that “≥” symbol each involve only
expectations computed with an N − 1 point marginal of h−3N |ψ̂(N)

�
|2|ψ(N)|2, which can be
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written as averages of conditional expectations—conditioning is on the (pn,qn) variables
of ψ(N)—and the inequality results when the conditioning is relaxed; incidentally, since we
do not impose any symmetry on the various ψ , the inequality symbol “≥” can actually be
replaced by the equality sign “=” (just tensor multiply each N − 1 point minimizing wave
function with any nice 1 point wave function in the respective n-th variables), but if bosonic
(or fermionic) symmetry is imposed, then the “≥” is generally even a “>.” For the final
equality we used the permutation symmetry of U

(N)
k,l .

Recalling (27) and (28), and letting ψ̃
(N−1)

B denote the normalized minimizer (which ex-
ists!) of

∑∑〈U(N)
k,l 〉ψ(N−1) , with the double sum running over 1 ≤ k < l ≤ N − 1, the last

expression in (31) can be recast as follows,

min
ψ(N−1)

∑∑

1≤k<l≤N−1

〈
U

(N)
k,l

〉
ψ(N−1)

=
〈
H

(N−1)

C

〉

ψ̃
(N−1)
B

− 1

(N − 1)(N − 2)

∑∑

1≤k<l≤N−1

〈
H

(1)

C ,k + H
(1)

C ,l

〉

ψ̃
(N−1)
B

, (32)

where

H
(1)

C := 1

2m
|p|2 − z2e2 1

|q| (33)

is a familiar Hydrogen-type Hamiltonian, and H
(1)

C , k and H
(1)

C , l indicate that (33) is expressed
in the k-th and l-th particle’s variables, respectively. To handle the Hydrogen-like contribu-
tions in the last line of (31) we use the virial theorem, which for N > 2 furnishes the identity

− 1

N − 2

∑∑

1≤k<l≤N−1

〈
H

(1)

C ,k + H
(1)

C ,l

〉

ψ̃
(N−1)
B

= 〈
H

(N−1)

C

〉
ψ̃

(N−1)
B

+ 1

N − 2
z2e2I (N−1)(ψ̃

(N−1)

B ), (34)

and since I (N−1)(ψ̃
(N−1)

B ) > 0, we obtain the estimate

− 1

N − 2

∑∑

1≤k<l≤N−1

〈
H

(1)

C ,k + H
(1)

C ,l

〉

ψ̃
(N−1)
B

>
〈
H

(N−1)

C

〉
ψ̃

(N−1)
B

. (35)

Estimates (31) together with identities (32) and (34) and the estimate (35), plus an obvious
inequality, now give, for N > 2,

E B
C (N) >

N2

(N − 1)(N − 2)

〈
H

(N−1)

C

〉
ψ̃

(N−1)
B

≥ N2

(N − 1)(N − 2)
min

ψ(N−1)
〈H(N−1)

C 〉ψ(N−1)

= N2

(N − 1)(N − 2)
E B

C (N − 1). (36)

Finally, dividing (36) by N2(N − 1) yields, for N > 2,

1

N2(N − 1)
E B

C (N) >
1

(N − 1)2(N − 2)
E B

C (N − 1) (37)
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and the proof of the monotonic increase of the map N �→ E B
C (N)/PC (N), defined for

N ≥ 2, is complete.

3.2 Proof of Proposition 2

Up to where the virial identity is needed the proof of Proposition 2 follows verbatim the
proof of Proposition 1. The different order-three polynomials in Propositions 1 and 2 are the
result of necessarily different “end games.”

Thus, we first rewrite the quadratic form Q (N)

N ,M(ψ(N)) into the more convenient format
of a quasi-classical expectation functional,

Q (N)

N ,M(ψ(N)) =
∫ ∫

H
(N)

N ,Mh−3N |ψ̂(N)

�
|2|ψ(N)|2d3N

pd
3N

q =: 〈H(N)

N ,M

〉
ψ(N) (38)

where H
(N)

N ,M(p1, . . . ,qN) is again the classical Hamiltonian with Newton interactions, for-
mally also given by (11) but now with pk ∈ R

3. Once again following Fisher and Ruelle [13],
Dyson and Lenard [12], and Lèvy-Leblond [28], we rewrite the Newton Hamiltonian (11)
as a double sum,

H
(N)

N ,M ≡
∑∑

1≤k<l≤N

U
(N)
k,l , (39)

but now

U
(N)
k,l := 1

2m(N − 1)

(|pk|2 + |pl |2
) − GMm

N − 1

(
1

|qk|
+ 1

|q l |
)

− Gm2 1

|qk − qj |
. (40)

The (N) at U
(N)
k,l reminds us of the explicit N dependence at r.h.s. (40). With (39) the

quadratic form alias expectation functional (38) becomes

Q (N)

N ,M(ψ(N)) ≡
∑∑

1≤k<l≤N

〈
U

(N)
k,l

〉
ψ(N) , (41)

and as before, for N > 2 we have the identity

∑∑

1≤k<l≤N

〈
U

(N)
k,l

〉
ψ(N) = 1

N − 2

∑

1≤n≤N

∑∑

1≤k<l≤N
k �=n�=l

〈
U

(N)
k,l

〉
ψ(N) . (42)

Note that (42) holds without assuming any particular symmetry of ψ(N).
We now start our estimates. Writing minψ(N) for the minimum over the subset of D

(N)
Q

satisfying ‖ψ(N)‖L2(R3N ) = 1, for N > 2 we find

E B
N (N;M) = min

ψ(N)

∑∑

1≤k<l≤N

〈
U

(N)
k,l

〉
ψ(N) ≥ N

N − 2
min

ψ(N−1)

∑∑

1≤k<l≤N−1

〈
U

(N)
k,l

〉
ψ(N−1) . (43)

All the steps to get (43) are identical to the corresponding steps which yield formula (31).
The last expression can be recast with the help of elementary algebra, thus

min
ψ(N−1)

∑∑

1≤k<l≤N−1

〈
U

(N)
k,l

〉
ψ(N−1)

=
〈
H

(N−1)

N ,M

〉

ψ̃
(N−1)
B,M

− 1

(N − 1)(N − 2)

∑∑

1≤k<l≤N−1

〈
H

(1,k)

N ,M + H
(1,l)

N ,M

〉

ψ̃
(N−1)
B,M

, (44)
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where ψ̃
(N−1)

B,M denotes the normalized minimizer of
∑∑〈U(N)

k,l 〉ψ(N−1) , the double sum run-
ning over 1 ≤ k < l ≤ N − 1, and where

H
(1)

N ,M := 1

2m
|p|2 − GMm

1

|q| (45)

is a familiar Hydrogen-type Hamiltonian, and the superscripts k and l at H
(1,·)
N ,M indicate that

(45) is expressed in the k-th and l-th particle’s variables, respectively. Curiously, the identity
(44) agrees exactly with the one in (32); naïvely one might have expected that the difference
in the N -dependence of the central terms, viz. Nz2e2 vs. GMm, would already show itself
at this point, but it does not. Be that as it may, the strict similarity between the proofs of
Propositions 1 and 2 ends here.

Namely, while we will also use the virial theorem to handle the Hydrogen-like terms in
the last line of (43), we now first recast these terms as follows,

1

N − 2

∑∑

1≤k<l≤N−1

〈
H

(1,k)

N ,M + H
(1,l)

N ,M

〉

ψ̃
(N−1)
B,M

= �
2

2m
K (N−1)(ψ̃

(N−1)

B,M ) − GMmC (N−1)(ψ̃
(N−1)

B,M ). (46)

For N > 3 the virial theorem now yields the identity

�
2

2m
K (N−1)(ψ̃

(N−1)

B,M ) = −N − 1

N − 3

〈
H

(N−1)

N ,M

〉
ψ̃

(N−1)
B,M

+ 1

N − 3
GMmC (N−1)(ψ̃

(N−1)

B,M ). (47)

Estimates (43) together with the identities (46) and (47), plus the inequality C (N−1)(ψ̃
(N−1)

B,M ) >

0, now give, for N > 3,

E B
N (N;M) ≥ N

(N − 3)

〈
H

(N−1)

N

〉
ψ̃

(N−1)
B,M

≥ N

(N − 3)
min

ψ(N−1)
〈H(N−1)

N 〉ψ(N−1)

= N

(N − 3)
E B

N (N − 1;M); (48)

the first inequality is strict if N > 4. Dividing (48) by N(N − 1)(N − 2) yields

1

N(N − 1)(N − 2)
E B

N (N;M) ≥ 1

(N − 1)(N − 2)(N − 3)
E B

N (N − 1;M) (49)

for N > 3, with strict inequality for N > 4. The proof of the monotonic increase of the map
N �→ E B

N (N;M)/PN (N), defined for N ≥ 3, is complete. �

3.3 Proof of Proposition 3

By the decomposition (17), the infimum of 〈H(N)

N ,0〉ψN equals the infimum of 〈H(N−1)

N ,int 〉ψ(N−1) ,
which with the help of (19) can be shown to be a minimum; here, the overbar on ψ(N−1) in-
dicates dependence on {qk}N−1

k=1 only.
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Writing W
(N)
k,l for the summands on r.h.s. (19), we can apply our strategy of proof of

Propositions 1 and 2. We just need to substitute W
(N)
k,l for U

(N)
k,l and ψ(N−1) for ψN , respec-

tively ψ(N−2) for ψ(N−1), in (42) and (43) (with M = 0), rewrite as in (44), with 〈W(N)
k,l 〉

ψ̃
(N−2)
B

in place of 〈U(N)
k,l 〉

ψ̃
(N−1)
B,M

, and find

E B
N (N;0) ≥ N

N − 2

[〈
H

(N−2)

N ,int

〉
ψ̃

(N−2)
B

− 1

N(N − 1)

∑∑

1≤k<l≤N−1

1

2m

〈|pj − pk|2
〉
ψ̃

(N−2)
B

]
,

(50)

where ψ̃
(N−2)

B now denotes the normalized minimizer of
∑∑〈W(N)

k,l 〉ψ(N−2) , the double sum
running over 1 ≤ k < l ≤ N − 1. At this point the virial theorem enters once again, but in
contrast to the proofs of Propositions 1 and 2 it here allows us to express r.h.s. (50) entirely in
terms of the expectation value of the intrinsic Hamiltonian, without producing any additional
terms which would have to be estimated. So at the end of the day, our proof yields, for N > 2,

E B
N (N;0) ≥ N2

(N − 1)(N − 2)
E B

N (N − 1;0), (51)

and dividing (51) by N2(N − 1) yields, for N > 2,

1

N2(N − 1)
E B

N (N;0) ≥ 1

(N − 1)2(N − 2)
E B

N (N − 1;0). (52)

The proof of the monotonic increase of the map N �→ E B
N (N;0)/PC (N), defined for

N ≥ 2, is complete. �

4 Further Spin-offs: Hall-Post Inequalities

Our Propositions 1, 2, and 3 are each equivalent to a statement that the N -body ground
state energy E (N) is bounded below by a specific N -dependent multiple of the N − 1-
body ground state energy E (N − 1); more precisely, when N > N0 (with N0 = 2 or 3) then
E (N) ≥ R(N)E (N − 1), where R(N) is some rational function of N . Here the so-compared
N -body and N − 1-body Hamiltonians (11), respectively (19), of our bosonic gravitational
systems differ only in their number of particles, and the Hamiltonians (1) of the bosonic
atoms differ only in the number of their “bosonic electrons” and the corresponding charge of
the atomic nucleus. Within the adapted approximations (neglecting: relativity, spin degrees
of freedom, nuclear motion, etc.) our Propositions are therefore statements about sequences
of systems as nature would supply them. These monotonicity results seem not to have been
known before.

Inspection of our proofs of Propositions 1, 2, and 3 reveals that these proofs establish also
technically somewhat stronger lower bounds for E (N) in terms of a specific N -dependent
multiple of the N − 1-body ground state energy E ′(N − 1) of an N − 1-body system with
suitably rescaled coupling constants. Such inequalities are known as Hall-Post inequalities;
cf. [23]. Indeed, our inequalities (31), (43) and (50) in this paper are identical, in essence if
not in appearance, to Hall-Post inequalities for our Hamiltonians. Since the masses and
charges of the various “elementary” particles of nature cannot be rescaled, nor can the
“constants of nature,” these intermediate inequalities (“intermediate” regarding proving our
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propositions) are therefore generally not statements about sequences of systems which na-
ture could supply.

There is (at least) one possible exception, though, to what we just wrote. Namely, in a
certain quantum-mechanical approximation to QCD in which a baryon is made of an N -
quark color-singlet state [1] the Hamiltonian has a factor 1/(N − 1) in front of the pair
interaction potential, and in this case the Hall-Post inequality relating the N - and the N − 1-
body systems is precisely an inequality between the ground state energies of the N -quark
and the N − 1-quark Hamiltonians. So in this case the Hall-Post inequality itself produces
a monotonicity result for “physical” (i.e., according to that model) baryon masses M(N),
viz. the sequence N �→ M(N)/N is monotonic increasing—see (2.7) in [1]. The proof of
(2.7) in [1] would not satisfy a mathematician, but it is “morally correct” and can easily
be made rigorous (for a large class of pair-interaction potentials). Our strategy of proof is
rigorous and produces the monotonicity result of [1] in “step one” (NB: the virial theorem is
not needed with 1/(N −1)-rescaled pair interactions). Incidentally, the result of [1] is meant
for fermionic quarks, but it holds for Bosons as well (see also our concluding remarks in the
next section).

The monotonicity result of [1] has spin-offs analogous to our corollaries, not noted in [1].
Thus, for “bosonic quarks” an upper bound on the quark-specific baryon mass M(N)/N as
defined by the approximation to QCD of [1] follows easily from the Hartree approxima-
tion, which together with the monotonic increase implies that the sequence N �→ M(N)/N

converges to a nontrivial limit. For fermionic quarks N �→ M(N)/N is unbounded.
Hall-Post inequalities between the ground state energies of N -body and N − K-body

systems with K = 1,2, . . . ,N − 2 and appropriately rescaled coupling constants were first
established in [15], picking up on earlier work in [21, 31] where K = N − 2. However,
the gist of the Hall-Post type proofs of the so-named inequalities is quite different from
ours and relies heavily on the symmetry (or antisymmetry) of the wave function, which
implies (in self-explanatory notation) that for each N and each ψ(N) all the 〈|p|2k〉ψ(N) have
a common value, all the 〈Vk,l〉ψ(N) have a common value, etc. By contrast, our proof of
inequalities (31), (43), and (50) in this paper does not make use of any symmetry of the
wave functions and works equally well when the minimization is carried out over some
subset of completely unsymmetric wave functions, should the demand arise. Moreover, with
wave functions replaced by classical configurations, our technique handles also the classical
ground state problems with pair interactions V (qk,q l ) which are bounded below. Typically
the V (qk,q l ) in a classical ground state configuration have no common value, so that the
Hall-Post strategy would fail to prove Proposition 1 in [25].

To summarize, our proofs can be characterized in a nutshell by saying that their basic
ingredients are the Hall-Post inequality and the virial identity for the respective Hamiltonian
under study, plus some obvious positivity inequality—except that we did not start from any
Hall-Post inequality but instead obtained the relevant inequality from scratch with a more
flexible type of proof which does not utilize any symmetry of the wave functions.

5 Concluding Remarks

Our Propositions 1, 2, and 3 are statements about the bosonic ground state energies of atoms
and stars. However, since we have not used any particular symmetry of ψ(N) in our estimates,
Propositions 1, 2, and 3 and their proofs hold verbatim also for fermionic ground state
energies E F

C (N) and E F
N (N;M), with M ≥ 0, obtained by minimizing only over the anti-

symmetric subspace of D
(N)
Q . So we conclude that also N �→ E F

C (N)/PC (N) and N �→
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E F
N (N;M)/PN (N) and also N �→ E F

N (N;0)/PC (N) are monotonic increasing. Alas,
Propositions 1, 2, and 3 are considerably less interesting for the ground state energies of
fermionic atoms and stars than for their bosonic counterparts.

Indeed, since E F
C (N) � −CN7/3 for large N [29, 36], the monotonicity of N �→

E F
C (N)/PC (N) is far from optimal. An optimal polynomial monotonicity result for the

ground state energies of fermionic atoms would state that N �→ E F
C (N)/P F

C (N1/3) is
monotonic increasing, where P F

C ( · ) is a polynomial of degree 7. In comparison, by the
upper bound E B

C (N) ≤ −CN3 from Hartree theory one cannot improve our monotonicity
result for the bosonic atomic ground state energies to any lower leading power in N .

The same remarks apply mutatis mutandis also to stars. Namely, since E F
N (N;0) �

−CN7/3 for large N (see [27] for a formal argument and [36] for a proof), and presumably
also E F

N (N;M) � −CN7/3 for large N , the monotonicity of N �→ E F
N (N;M)/PN (N)

and of N �→ E F
N (N;0)/PC (N) is far from optimal polynomial monotonicity for fermi-

onic stars, namely that N �→ E F
N (N;M)/P F

N ,M(N1/3) is monotonic increasing, where
P F

N ,M( · ) is a polynomial of degree 7, indexed by M ≥ 0. On the other hand, one cannot
improve our monotonicity result for the bosonic stellar ground state energies to any smaller
leading power in N , for E B

N (N;M) ≤ −CN3 by Hartree theory.
To prove the optimal polynomial monotonicity for the fermionic ground state energies of

atoms and stars, if possible at all, will require detailed input about the structure of the anti-
symmetric subspace of the form domain. Yet it may be hoped that the techniques developed
in this paper will serve as an important stepping stone towards such fermionic proofs.
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